ARIES-AT
MATERIAL OPTIONS FOR STABILIZING SHELLS

I.N. Sviatoslavsky

Presented by Lester Waganer (Boeing)

Fusion Technology Institute
University of Wisconsin, Madison WI

ARIES Review Meeting
March 20–22, 2000, San Diego CA
Subjects Covered

- Material options for the ARIES-AT stabilizing shells
- Properties such as resistivity, thickness, with and without cladding and mass per toroidal cm, as functions of temperature
- Cooling options
- Recommendations
Material Options for Stabilizing Shells

Requirement as specified by C. Kessel (PPPL):

Assuming 400 C the required thickness for W is 5.5 cm to keep plasma vertical instability growth time in the right range.

What are the options

Tungsten: High temperature refractory metal, high resistivity, high density ($\rho = 19.3$ g/cm3), potential for radiative cooling

Aluminum: Low temperature in solid form, high temperature in liquid form, liquid form resistivity comparable to W, low density ($\rho = 2.7$ g/cm3), requires a cladding material in case of LOCA/LOFA

Copper: High temperature both solid and liquid form, resistivity lowest of all, roughly 50% of Al and much lower than W, medium density ($\rho = 8.9$ g/cm3), in solid form suffers from radiation embrittlement, and resistivity increase with radiation, may require cladding in case of LOCA/LOFA
Electrical Resistivities of solid W and solid and liquid Al and Cu as functions of Temp.

[Graph showing electrical resistivities of Tungsten, Al (solid), Al (liquid), Cu (solid), and Cu (liquid) as functions of temperature]
Thicknesses of Stabilizing Shells Exclusive of Cladding Material

Temperature (°C)

Thickness of Stabilizing Shell (cm)

- Tungsten
- Al (liq.)
- Cu (liq.)
- Al (sol.)
- Cu (sol.)
Overall Thickness of Stabilizing Shells with a 3 mm Cladding Thickness on the Al and Cu
Mass of Stabilizing Shells (Kg) per Toroidal cm Including Mass of W Cladding

Temperature (C)

Mass of each shell per toroidal cm (Kg)

Tungsten
Cu (liq.)
Cu (sol.)
Al (sol.)
Al (liq.)
<table>
<thead>
<tr>
<th>Material</th>
<th>Temp. Range (C)</th>
<th>Shell Thickness w/o Cladding (cm)</th>
<th>Cladding Required</th>
<th>Shell Thickness w/ Cladding (cm)</th>
<th>Mass of Shell kg/cm (tor)</th>
<th>Cooling Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tungsten</td>
<td>200 – 1400</td>
<td>4.0 – 17.5</td>
<td>No</td>
<td>N/A</td>
<td>11.0 – 50.0</td>
<td>Water cooling, He or LiPb cooling, Radiative cooling possible</td>
</tr>
<tr>
<td>Aluminum</td>
<td>200 – 600</td>
<td>2.0 – 3.8</td>
<td>Yes</td>
<td>2.6 – 4.4</td>
<td>2.2 – 3.2</td>
<td>Water cooling, He or LiPb cooling</td>
</tr>
<tr>
<td></td>
<td>(Liquid)</td>
<td>N/A</td>
<td>Yes</td>
<td>9.2</td>
<td>6.2</td>
<td>He or LiPb cooling</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Compatible with W or Mo cladding up to 700 C</td>
</tr>
<tr>
<td>Copper</td>
<td>200 – 1000</td>
<td>N/A</td>
<td>Yes</td>
<td>1.7 – 4.0</td>
<td>3 – 6.2</td>
<td>Water cooling, He or LiPb cooling</td>
</tr>
<tr>
<td></td>
<td>(Liquid)</td>
<td>N/A</td>
<td>Yes</td>
<td>8.0 – 8.5</td>
<td>10.8 – 11.2</td>
<td>He or LiPb cooling, Compatible with Mo cladding up to 1300 C</td>
</tr>
<tr>
<td></td>
<td>1100 – 1300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Radiative cooling possible</td>
</tr>
</tbody>
</table>
Recommendation

First Option:

- Liquid Cu in Mo cladding at 1300 C. Mo tubes cooled with He or LiPb. Investigate radiative cooling. 8.5 cm thick and 11.2 kg/tor·cm.

Radiation effect: Ni has a melting point of 1455 C and Co 1495 C. Zr has a liquid density of 6.48 g/cm3 compared with Cu which is 8.2 g/cm3. Ni and Co will precipitate as solids and Zn will segregate by gravity. With the absence of these transmutants, the resistivity will not change.

Second option:

- W at low temp. 200 C – water cooled, 4 cm thick, 11 kg/tor·cm
 400 C – He cooled, 6.1 cm thick, 17.5 kg/tor·cm