Enrichment and Conversion of Fission Reactor Fuel Elements

- Two fissile isotopes commonly considered:

 - ^{235}U (Use enrichment)
 - ^{239}Pu (Use reprocessing)

- U.S. (weapons---->submarines---->civilian 1944 present)

- Canada..Commercial..Heavy Water + Nat. U

Gaseous Diffusion Process - UF_6

- Relies on the fact that UF_6 is solid at RT and a vapor at moderate temperatures.

(Figure)

- Gaseous diffusion relies on the difference in the rate which $^{235}UF_6$ and $^{238}UF_6$ diffuse through a barrier containing many holes.

- The relative speed of the two molecules can be derived from their kinetic energies:

$$kT = \frac{MV^2}{2}$$

M = molecular mass

or,

$$\frac{V_L}{V_H} = \sqrt{\frac{M_H}{M_L}} = \alpha$$
• Relative frequency at which molecules of different species pass through a small hole is proportional to the speed of the molecule.

Hence the ratio of \(\frac{^{35}U}{^{38}U} \) on the low pressure side is greater than the \(\frac{^{35}U}{^{38}U} \) ratio on the high pressure side.

For \(^{235}UF_6\) and \(^{238}UF_6\), maximum \(\alpha \) is:

\[
\alpha = \sqrt{\frac{238 + 6 \sum 19}{235 + 6 \sum 19}}
\]

\(\alpha = 1.004289 \)

(more realistic value is 1.003 due to down stream back pressure and leaks)

• Low value of \(\alpha \) requires a very large number of steps

Figures (2)

• What is the Barrier? (mostly classified)
 • Very thin and delicate
 • 100's of millions of holes/cm³
 • \(\approx 20 \) Å diameter hole
 • Must exclude organic materials and air to avoid plugging
 • Materials reported to be sintered Ni and anodized Al
More complete analysis of U enrichment, see:

Important Variables and Equations

\[\text{kg U Feed (F)} = \text{kg Enriched U Product (P)} + \text{kg U Waste (W)} \]

\[x^F_f F = x^P_p P + x^W_w W \]

where

- \(x_f \) = wt. fraction of \(^{35}U \) in feed
- \(x_p \) = wt. fraction of \(^{35}U \) in product
- \(x_w \) = wt. fraction of \(^{35}U \) in waste

(Note: F, P, & W could be in kg or kg/unit time)

- 2 eqs. and 6 variables, F, P, W, \(x_f \), \(x_p \), \(x_w \)
- Trick is to solve for 2 in terms of the other 4!

1.) \(x_f = 0.711\% \) now (1996)

2.) \(x_p \) = as requested by the customer

Table 1.1 and 2 figures

3.) \(x_w \) = could be between 0.2 and 0.3 \%, currently in the U.S. is 0.3\%
4.) \(P = \text{mass of desired product} \)

One can solve the equations above;

\[
F = P \left(\frac{x_p - x_w}{x_f - x_w} \right)
\]

\[
W = P \left(\frac{x_p - x_f}{x_f - x_w} \right)
\]

Feed factor is defined as;

\[
\frac{F}{P} = \left(\frac{x_p - x_w}{x_f - x_w} \right)
\]

Waste factor ;

\[
\frac{W}{P} = \frac{F}{P} - 1
\]

How Much Energy is Required to Reach a Given Enrichment?

Define Separative Work Unit (SWU) as;

"resource required to perform the enrichment to the desired level of \(x_p \) given \(x_f \) and \(x_w \). For gaseous diffusion this is equivalent to electrical energy"

of SWU's produced by an enrichment plant
during a time period \(t \),

\[
SWU = \left[P \sum V(x_p) + W \sum V(x_w) - F \sum V(x_f) \right] t
\]

The quantity \(V(x_i) \) is called the separation potential and is given by;

\[
V(x_i) = (2x_i - 1) \ln \left(\frac{x_i}{1 - x_i} \right)
\]

where \(i = f,p,w \)

We normally quote SWU's per unit of product (\(P \cdot t \)) where \(P \) is feed rate.

\[
S = \frac{SWU}{P \sum t} = V(x_p) + \left(\frac{W}{P} \right) \sum V(x_w) - \left(\frac{F}{P} \right) \sum V(x_f)
\]

\(S \) = "SWU" factor, \(\frac{SWU}{kg} \)

Figure 3.6 plus Schematic

Problem -1
a.) What is the number of kgs of natural U that has to be provided as feed in an enrichment plant if one requests 30,000 kg of U enriched to 3% in ^{35}U? Assume the tails assay is 0.2%.

b.) What is the number of SWU’s needed for separation?

$$\frac{F}{P} = \frac{(3 - 0.2)}{(0.711 - 0.2)} = 5.479 \frac{kg \text{ feed}}{kg \text{ product}}$$

Total feed is then;

$$F = 30,000 \cdot 5.479 = 164,370 \text{ kg U feed}$$

b.)

$$V(x_f) = (2 \sum 0.00711 - 1) \ln \left[\frac{0.00711}{1 - 0.00711} \right] = 4.869$$

$$V(x_w) = (2 \sum 0.002 - 1) \ln \left[\frac{0.002}{1 - 0.002} \right] = 6.188$$

$$V(x_p) = (2 \sum 0.03 - 1) \ln \left[\frac{0.03}{1 - 0.03} \right] = 3.268$$

$$S = 3.268 + (5.479 - 1)(6.188) - (5.479)(4.869) = 4.307$$

Hence the total number of SWU’s is then;

$$30,000 \text{ kg} \cdot 4.307 \text{ SWU/kg} = 129,210 \text{ SWUs}$$
<table>
<thead>
<tr>
<th></th>
<th>BWR</th>
<th>PWR</th>
<th>HTGR</th>
<th>CANDU</th>
<th>LMFBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW(e)</td>
<td>1100</td>
<td>1100</td>
<td>330</td>
<td>508</td>
<td>1200</td>
</tr>
<tr>
<td>Thermal Eff.-%</td>
<td>33</td>
<td>33</td>
<td>39</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>
| **Assembly Geometry** | 8x8 | 9x9 | 17x17 | Hexagonal | Cylindrical | Hexogona
| **Assembly Length-m** | 3.8 | 3.7 | 0.78 | 0.5 | 1 |
| **# of Assemblies** | 590 | 180 | 1482 | 4680 | 360 |
| **Core Ht-m** | 3.8 | 3.7 | 4.75 | 5.95 | 1 |
| **kg Fuel /assembly** | 270 | 600 | 22 | 37 | 80 |
| **Tot.tonne fuel in core** | 138 | 90-100 | 0.77-235U | 105 | 29 |
| **BU-MWd per MTU** | 30,000 | 30,000 | 100,000 | 8,000 | 100,000 |
| **% Fuel Replaced/y** | 25 | 33 | 18 | continuous | Varied |
| **Enrichment-%** | 1.8 | 2.8 | 93 | 0.711 | 15-20 |
| **Power Density-(kW/liter)** | 54 | 100 | 8 | 12 | 280 |
| **Linear Ht Rate-kW/m** | 19 | 17 | 8 | 26 | 29 |
| **a-Initial Loading** | | | | | |
1.) An enrichment plant has a throughput of 32,000 kgU/day and produces 26,000 kgU as tails. What is the enrichment of the product if the feed is natural U and the tails are 0.25%?

2.) A gaseous diffusion method has been proposed to produce BF$_3$ enriched to 90% in B10. How many kgs of BF$_3$ feed (natural B) are needed to produce 1 kg of B10 with 8% tails?

3.) Calculate the natural U feed and SWU factors 1 billion years into the future. Assume tails of 0.15% and 3% enriched product;

$$t_{1/2} (^{35}\text{U}) = 7.1 \times 10^8 \text{ y},$$
$$t_{1/2} (^{38}\text{U}) = 4.51 \times 10^9 \text{ y}.$$

4.) Assuming that the price per SWU is $80 and the cost of conversion is $4/kgU, what is the price of the U$_3$O$_8$ ($\text{lb U}_3\text{O}_8$) beyond which it will cost less to enrich the already mined, purified, and converted (to UF$_6$) tails that contain 0.2% ^{35}U rather than mine new U?

[Assume the product will be 3% enriched in either case and the new tails will be 0.1% (when the old tails are enriched). Tails stored as UF$_6$ cost nothing.]