Nucleosynthesis: Building New Elements in Stars
Prof. Jay Gallagher--Astronomy

• Stars as natural thermonuclear reactors
• Basic nuclear burning processes
• Special nucleosynthesis processes:
 – Big Bang
 – Supernovae: r-process
 – Asymptotic giant branch (AGB) stars: s-process
• Element dispersal
• (Special conditions in solar system formation)
First nucleosynthesis in the cooling Universe:
Products of Big Bang:
1. Helium
2. Deuterium
3. Lithium

But nucleosynthesis stopped by absence of stable element 8. All “metals” Z>8 must be made from H & He later.
Stellar spectra--Line strengths + models = abundances

Dark regions are absorption lines where light is intercepted by specific species of atoms

Spectrum is light sorted by wavelength--this example covers the visible region where most lines from Fe-peak elements
WIYN Telescope

Spectroscopy drives astronomers to higher performance and larger optical telescopes.
Globular stars cluster: oldest coeval groupings of stars (12 Gyr) have low metals--->heavy elements produced by **STARS**!

Ages of stars can best be determined for systems of stars that formed at the same time.
Lagoon nebula: Gas ionized by young, hot stars with high masses (20-100 x Sun) cools by atomic emission from α-elements: N,O,Ne,S, allowing their abundances to be measured from spectra of the nebula.
Cosmic abundances--most "metals" = CNO + Fe peak.

Pagel, Nucleosynthesis and Chemical Evolution of Galaxies
Classifying stars by their nuclear burning characteristics

- **low mass, \(\leq 2 \) Msun; H->C, white dwarf remnants**

- **intermediate mass, 2-8 Msun H->C/O/Ne, white dwarf remnants.** Slow neutron captures during late evolution as “asymptotic giant” stars. C from He, N from CNO cycle burning.

- **binary star evolution yields type I supernovae from intermediate mass stars; Fe-peak elements.**

- **massive 8-30 Msun; H->Fe; type II supernovae, neutron star remnants, \(\alpha \)-elements, O-Ca, & r-process elements.**

- **very massive 30-100+ Msun, type II supernovae, black hole remnants, r-process**
Nuclear mass defects & nuclear energy:

\[
\Delta M_n = M_n - Z M_p - N M_n
\]

\[
\Delta E = \Delta M_n c^2
\]

Conversion of mass to energy

<table>
<thead>
<tr>
<th>Nucl.</th>
<th>Total Binding E (MeV)</th>
<th>Binding E/A (Mev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He(2p,2n)</td>
<td>-28.3</td>
<td>-7.07</td>
</tr>
<tr>
<td>C(6p,6n)</td>
<td>-92.16</td>
<td>-7.68</td>
</tr>
<tr>
<td>O(8p,8n)</td>
<td>-127.62</td>
<td>-7.98</td>
</tr>
<tr>
<td>Ca(20p,20n)</td>
<td>-342.05</td>
<td>-8.55</td>
</tr>
<tr>
<td>Fe(26p,30n)</td>
<td>-492.26</td>
<td>-8.79</td>
</tr>
<tr>
<td>U(92p,146n)</td>
<td>-1801.70</td>
<td>-7.57</td>
</tr>
</tbody>
</table>

Fusion releases
Energy only to near Fe-peak
Star as a perfect gas sphere:

\[\Delta U = -\frac{1}{2} \Delta \Omega \text{contact heats star} \]

Equations of stellar structure:

\[\frac{dp}{dr} = -\frac{Gm\rho}{r^2} \text{pressure equilibrium} \]

\[\frac{dm}{dr} = 4\pi r^2 \text{mass conservation} \]

Power \(= L = -4\pi r^2 (ac/3\rho \kappa) \left[\frac{dT^4}{dr} \right] \text{radiation diffusion} \]

\[\varepsilon = \frac{dL}{dm} \text{conservation of energy} \]
Binding energy/nucleon: 80% of energy in H->>He

Thus most fusion energy is released in the H-> He step of the process.
Basic physics:

\[U_{elec} = Z_1 Z_2 e^2 / r^2 = 550\text{keV} \text{ for } r = r(p) \]

\[\Rightarrow U_{elec} = E_{th} \text{ for } T = 6 \times 10^9 K \ (E_{th} = 0.086 T_6 \text{keV}) \]

but \(T(0) \approx (m_p G / k)(M / R) \approx 10^7 K \)

Electric repulsion dominates!!!

Solution: quantum mechanical effects:

\[P = \exp(-2\pi\eta) \text{ probability to tunnel where} \]

\[2\pi\eta = 31.3 Z_1 Z_2 (\mu / E)^{1/2} \mu \text{ in amu; } E \text{ keV} \]

\[\rightarrow \sigma(E) \propto (1 / E) \exp(-2\pi\eta) S(E) \]

Thermonuclear reactions can occur at stellar core temperatures
The proton-proton cycle is the first major H-burning process and occurs at the lowest central temperatures in stars. It consists of 3 distinct channels: PPI, PPII, & PPIII.

Figure 4.3 The nuclear reactions of the $p-p$ I, II, and III chains.
At higher temperatures, H→He via the CNO cycle which depletes O and enhances the N abundances. The CNO cycle dominates H-burning for stars slightly more massive than the Sun.

Figure 4.4 The nuclear reactions of the CNO bi-cycle.
This diagram shows how abundances vary with time during the CNO cycle. Note how the N abundance increases as this cycle operates over long times.

Fig. 5-15 The approach to equilibrium in the CNO bi-cycle as a function of the number of protons captured per initial CNO nucleus. This particular calculation started with equal concentrations of C12 and O16. [After G. R. Caughlan, Astrophys. J., 141:688 (1965). By permission of The University of Chicago Press. Copyright 1964 by The University of Chicago.]
The conversion of He→C is tricky because no stable A=8 nucleus exists. Instead, the triple alpha process involves 3 fast collisions which go directly to C.

The success of the 3-alpha process rests on the presence of an excited nuclear state of C, which was hypothesized to exist by F. Hoyle and is the physical key to much of stellar nucleosynthesis.

Figure 7.3. Schematical representation of the process by which ^{12}C can be synthesized using only ^4He nuclei, commonly called the triple-α process or "Salpeter-process." In the first step of this process, a small abundance of ^8Be nuclei is built up to equilibrium with its α-particle decay products. An additional α-particle is captured by the ^8Be nuclei, thus completing the ^{12}C creation process. This capture reaction proceeds via an s-wave resonance, which is located close to the Gamow energy region indicated for several temperatures.
Primary Stellar Nuclear burning phases

- H-> He via CNO (converts O->N)
 - 3He -> C (triple alpha)
- advanced burning C or O + \(\alpha\) -> \(\alpha\)-rich
 - equilibrium process Si -> Fe
1. HYDROGEN-BURNING, HELIUM-BURNING, AND s-PROCESS

2. HYDROGEN-BURNING AND HELIUM-BURNING

3. AGING EFFECT IN α-, e-, AND s-PROCESSES
Cosmic abundances--most “metals” = CNO + Fe peak.

Pagel, Nucleosynthesis and Chemical Evolution of Galaxies
Pre-supernova Massive Star

Advanced burning shell
C-O-Ne-Si burn

core

Fe core

Envelope

H & He Shells
Supernova 1987a—death of 25 Msun star

© Anglo-Australian Observatory

Supernova 1987a death of 25 Msun star
Light Curve of Supernova 1987A

- Red light
- Blue light

Ground-based observations

Hubble Space Telescope:

- Luminosity (L_\odot)

Years after explosion

Apparent magnitude
Supernova 1987A Rings

Hubble Space Telescope
Wide Field Planetary Camera 2
Crab Nebula--a supernova remnant --WIYN Telescope
Cosmic abundances--most “metals” = CNO + Fe peak.

The r-process = rapid capture of neutrons onto Fe seed nuclei--makes some very heavy elements above Fe-peak

Massive star supernovae-->
α-elements O, Ne, Si, Ca

Pagel, Nucleosynthesis and Chemical Evolution of Galaxies
Binary star mass transfer--overload white dwarf. One path to type I supernovae in which much of the Fe-peak is synthesized.
Cosmic abundances--most “metals”=CNO + Fe peak.

Low mass supernovae--->”iron peak”

Pagel, Nucleosynthesis and Chemical Evolution of Galaxies
Massive red supergiant star with complex atmosphere:

 e.g., Antares in the Scorpion
Synthesis of elements of by capture/decay

The s-process is slow neutron capture--elements have time to decay. This occurs in dying moderate mass red stars.
Tc half life: 210,000 yr!

Pagel, Nucleosynthesis and Chemical Evolution...
A young planetary nebula showing interaction with remnants of the cool star’s outer layers.
Planetary nebula around dying star--N+s-process?
Cosmic abundances--most “metals”=CNO + Fe peak.

s-process in moderate (2-8 M-sun) red stars.

Pagel, Nucleosynthesis and Chemical Evolution of Galaxies
Galaxy NGC 3079

HST • WFPC2

NASA and G. Cecil (University of North Carolina) • STScI-PRC01-28