ANCILLARY SUPPORT ACTIVITIES

- LUNAR AND PLANETARY SCIENCE STATION
- SOLAR SYSTEM OBSERVATORY
- BASIC PHYSICS RESEARCH CENTER
- FAR-SIDE RADIO AND OPTICAL OBSERVATORY
- TERRESTRIAL METEOROLOGY CENTER
- DEEP SPACE MISSION OPERATIONS CENTER
- ONE-SIXTH GRAVITY SPACE PHYSIOLOGY RESEARCH CENTER
- ONE/SIXTH GRAVITY MATERIALS RESEARCH CENTER
- TOURIST FACILITY
- ARCHIVAL FACILITY
“CULTURAL” DESIGN CONSIDERATIONS

• HABITAT AND INDOOR WORKING FACILITIES PERSONNEL FRIENDLY
 – ELECTONIC, REALTIME WINDOWS
 – PIPED IN NATURAL LIGHT
 – PRIVACY AREAS
 – PERSONAL GARDEN PLOTS
 – INDIVIDUAL AND PRIVATE VOICE AND ELECTONIC COMMUNICATIONS BACK TO EARTH

• PLAN ON EXTERIOR RECREATION
 – ADDITIONAL DEMAND ON SPACE SUIT LONGEVITY AND RELIABILITY

• DETERMINE LONG TERM SUITABILITY OF 1/6 GRAVITY FOR INDIVIDUALS AND FAMILIES
 – BIOMEDICAL RESEARCH IN LONG TERM EFFECTS
 – BIOMEDICAL RESEARCH IN CHILD PHYSICAL DEVELOPMENT
 – BIOMEDICAL RESEARCH IN TO BASIS FOR OCCUPATIONAL MEDICAL PRACTICE
 – RE-ADAPTATION PROTOCOL FOR RETURN TO EARTH

• FINANCIAL / POLITICAL INCENTIVES FOR ENTERPRISE OWNERSHIP
 – STOCK AND STOCK OPTIONS
 – GOVERNANCE REPRESENTATION
 – LONG TERM PLAN FOR SELF-GOVERNANCE OF SETTLEMENT
VARIOUS CLASS MISSIONS

• SPLIT/SPRINT-OPPOSITION CLASS (1988 NASA OFFICE OF EXPLORATION)
 – ROBOTIC PRECURSORS
 – ONE CARGO VEHICLE/ONE CREW VEHICLE
 – 14 MONTHS
 – 30 DAYS IN ORBIT
 – 20 DAYS ON SURFACE
 – 4 CREW ON SURFACE / 4 IN ORBIT
 – 60 TOTAL HOURS OF EVAS BY 2 CREW MEMBERS
 – 3 MISSIONS

• SPLIT/SPRINT-OPPOSITION CLASS (1988 NASA JSC)
 – ROBOTIC PRECURSORS
 – ONE CARGO VEHICLE/ONE CREW VEHICLE
 – 14 MONTHS
 – 30 DAYS IN ORBIT
 – <20 DAYS ON SURFACE
 – 2 CREW ON SURFACE / 1 IN ORBIT
 – 60 TOTAL HOURS OF EVAS BY 2 CREW MEMBERS
 – 1 MISSION

• VENUS SWING-BY (COLLINS, 1988)
 – ROBOTIC PRECURSORS?
 – ONE VEHICLE
 – 22 MONTHS
 – 30 DAYS IN ORBIT?
 – 40 DAYS ON SURFACE
 – 4 CREW ON SURFACE / 4 IN ORBIT?
 – 120 TOTAL HOURS OF EVAS BY 2 CREW MEMBERS?
 – 3 MISSIONS?

• "MARS DIRECT" CONJUNCTION CLASS (ZUBRIN, 1996, NASA INTEREST, 1999)
 – ONE AUTOMATED CREW RETURN VEHICLE/ONE DELAYED CREW VEHICLE
 – 30 MONTHS
 – MANUFACTURE RETURN FUEL AND OXIDIZER PRIOR
 – TO CREW LAUNCH
 – 0 DAYS IN ORBIT
 – 18 MONTHS ON SURFACE
 – 4 CREW ON SURFACE / 0 IN ORBIT
 – REPEATED MISSIONS
MINIMUM ENERGY

- MINIMUM ENERGY-CONJUNCTION CLASS (NEAL, ET AL., 1989)
 - RECONNAISSANCE FROM ORBIT / NO ROBOTIC PRECURSORS REQUIRED
 - ONE VEHICLE / TWO LANDERS
 - 32 MONTHS
 - 18 MONTHS IN ORBIT
 - 90 TOTAL DAYS ON SURFACE
 - 4 CREW ON SURFACE / 4 IN ORBIT ALTERNATING TO SURFACE
 - 1200 TOTAL HOURS EVAS BY 8 CREW MEMBERS AT TWO SITES
 - 4 MISSIONS/8 SITES WITH FIFTH MISSION THE CREATION OF A PERMANENT MARS BASE WITH 8 INITIAL INHABITANTS

- MAJOR POSSIBLE ENHANCEMENT OPTIONS
 - LAUNCH FROM THE MOON WITH LUNAR DERIVED CONSUMABLES (GREATER PAYLOAD) (SEE STANCATI, ET AL., 1991)
 - 3HE FUSION / NUCLEAR FISSION / SOLAR ELECTRIC PROPULSION (SHORTENED TRANSIT TIME)
 - TRAJECTORY SHAPING (FLEXIBLE STAY TIMES AT MARS)
 - AEROBRAKING (MARS ORBIT INSERTION AND RETURN TO EARTH)
MINIMUM ENERGY

FLEXIBILITY IN TRANSIT AND ORBIT

• LANDING DELAY DUE TO EQUIPMENT OR WEATHER PROBLEMS
• SURFACE EXPLORATION DELAY DUE TO EQUIPMENT, WEATHER, ADAPTATION, OR BIOLOGICAL HAZARD PROBLEMS
• ASCENT DELAY DUE TO EQUIPMENT PROBLEMS
• EARLY ASCENT DUE TO DEGRADING SYSTEMS OR A CREW HEALTH PROBLEM
• DESIRE EXPLORE PHOBOS AND / OR DEIMOS(?)
• "MISSION CONTROL" AND COMMUNICATIONS RELAY IN MARS ORBIT
• LANDING SITE VERIFICATIONS FROM MARS ORBIT SENSORS AND ANALYSIS

• OTHER ISSUES
 – IN-ROUTE, IN-ORBIT, ON-SURFACE SIMULATION AND TRAINING REQUIRED
 – MISSION RELEVANT AND VALUABLE SCIENTIFIC ACTIVITIES IN-ROUTE
 – MISSION MONITORING AND NON-TIME CRITICAL DATA PROCESSING ON EARTH
 – HIGH RATE DATA TRANSMISSION MARS-EARTH-MARS

• PROBLEMS
 – MASS COST TO SUPPORT CREW OF 8 (COULD REDUCE TO 4 AND ONE LANDING WITH INCREASE OVERALL RISK)
SPACE BIOMEDICAL ISSUES IN MICROGRAVITY

• MAJOR KNOWN PROBLEMS
 – MUSCLE ATROPHY
 • HEART
 • SUPPORT
 – BONE AND OTOLITH DEMINERALIZATION
 – RATE OF RE-ADAPTATION TO GRAVITY ENVIRONMENT
 – IMMUNE SYSTEM COMPROMISE (?)
 – RADIATION PROTECTION

• COUNTER-MEASURE OPTIONS
 – HEAVY, ANAROBIC EXERCISE
 – CENTRIFUGAL FORCE
 – DRUG THERAPY
 – EXERCISE
 – CENTRIFUGAL FORCE
 – DRUG THERAPY
 – EXERCISE IN GRAVITY

NOTE: NO SCIENTIFICALLY CREDITABLE UNDERSTANDING OF THESE PROBLEMS AND OPTIONS HAS BEEN DEVELOPED TO DATE DUE TO THE LACK OF A SYSTEMATIC RESEARCH PROTOCOL AND USE OF INAPPROPRIATE TEST SUBJECTS. NASA HAS ONLY HAD 40 YEARS, FOR CRYING OUT LOUD!

ALL OF THE ABOVE

IN-TRANSIT AND IN ORBIT
“WATER” SURROUNDED STORM CELLER
ON-SURFACE
“REGOLITH” COVER FOR ZENITH
ORBITAL “MISSION CONTROL”
(FIRST FEW MISSIONS)

• OVERALL SUCCESS NOT DEPENDENT ON SUCCESS OF PRECURSORS

• COMMUNICATIONS DELAY OF 8-40 MINUTES PUTS EARTH “OUT OF THE LOOP”

• TAKE ADVANTAGE OF CONJUCTION CLASS MARS-STAY REQUIREMENT
 – 16 MONTHS IN ORBIT

• PROVIDES CURRENT ENVIRONMENTAL DATA AND HUMAN COGNITIVE ANALYSIS ON THE SPOT
 – LANDING SITE SELECTION AND VERIFICATION AND DETAILED SURFACE MISSION PLANNING
 – SPECTRAL DATA
 – RADAR DATA
 – SURFACE PROBES
 – LANDING BEACON DEPLOYMENT
 – LANDING TRAJECTORY PRECURSORS THROUGH ATMOSPHERE
 – DATA FUSION SOFTWARE
 – SAMPLE RETURN TO ORBIT VS. TESTS AFTER LANDING (?)
 – REFINE LANDER PAYLOAD
ORBITAL “MISSION CONTROL” -2
(FIRST FEW MISSIONS)

- BUILD ON MARINER, VIKING, PATHFINDER, AND MARS SURVEYOR DATA BASE
- USE EARTH DATA PROCESSING AND CONSULTATION
- MARS ENVIRONMENT AND SURFACE BETTER CHARACTERIZED THAN BEFORE APOLLO 11
 - EXCEPT FOR POTENTIAL PATHOGENS IN ISOLATED ECOSYSTEMS
- LANDING SYSTEMS MONITORING
- LANDER-EARTH DATA RELAY AS REQUIRED
- EVA PLANNING ASSISTANCE
- PHOBOS-DEIMOS EXPLORATION (SEE NEAL, ET AL, 1989)
IMAGINE, YOU ARRIVE IN MARS ORBIT AND THIS IS WHAT HAS HAPPENED SINCE LEAVING EARTH!

Mars • Global Dust Storm

June 26, 2001
Hubble Space Telescope • WFPC2

September 4, 2001
PICK YOUR LANDING REGION

OLYMPUS MONS?

VALLES MARINERIS?
VALLES MARINERIS AND OUTFLOW CHANNEL ELEVATIONS
NASA/MOLA

PICK YOUR LANDING AREA
...VALLES MARINERIS MAY PRESENT AN EXCITING APPROACH, LANDING, AND EXPLORATION TARGET!

NASA/JPL/MALIN SPACE SCIENCE SYSTEMS.
WITH A LANDING AMONG THE LAYERS AND FOSSILS (?) OF CANDOR CHASMA

100 METERS OR A LITTLE LESS THAN A SATURN V OR A LITTLE MORE THAN A FOOTBALL FIELD
A POSSIBLE REPRESENTATIVE VIEW FROM THE “MARTIAN MODULE”
BEFORE THE FIRST EVA, HOWEVER....
VALLES MARINERIS WILL BE A TAD MORE SPECTACULAR
EVA SCHEMATIC
45 DAY SURFACE STAY

“13” = DAY SINCE LANDING
HUMAN MISSION FOR MARS BASE SITE EVALUATION

• WEEK ONE (DAYS 1-6)
 – READAPTATION
 – ENVIRONMENTAL TESTS
 – ACTIVATION OF EXTERIOR SENSORS
 – PHYSICAL MONITORING
 – PLANNING

• WEEK TWO (DAYS 8-13)
 – SHORT/SIMPLE PROXIMITY EVAS
 – DEPLOY COMM ANTENNA / SCIENCE STATION / AGRICULTURAL TEST STATION
 – START DEEP DRILL SYSTEM
 – SELECTED SAMPLE ANALYSIS
 – PHYSICAL MONITORING
 – PLANNING SESSIONS

• WEEK THREE (DAYS 15-20)
 – SECTOR 1 EXPLORATION
 – MID LENGTH EVAS USING ROVER
 – EXTENDED RANGE EVA WITH TWO ROVERS
 – SHALLOW DRILLING/DEPLOY GEO. NET
 – SELECTED SAMPLE ANALYSIS
 – PHYSICAL MONITORING
 – PLANNING SESSIONS

• WEEK FOUR (DAYS 22-27)
 – SECTOR 2 EXPLORATION
 – DITTO WEEK THREE

• WEEK FIVE (DAYS 29-34)
 – SECTOR 3 EXPLORATION
 – DITTO WEEK THREE

• WEEK SIX (DAYS 36-41)
 – SECTOR 4 EXPLORATION
 – ASCENT SIMULATIONS
 – DITTO WEEK THREE

• WEEK SEVEN (DAYS 43-45)
 – MOTHBALL FACILITY
 – PREPARE ROVER FOR REMOTE OPERATION
 – FINAL ASCENT SIMULATIONS
 – SAMPLE SELECTION AND STORAGE

• NOTE: ONE REST DAY PER WEEK
 – FOUR PERSON CREW
 – TWO PERSON EVAS, ALTERNATE BETWEEN PAIRS
EARLY LANDINGS STRATEGY
GOAL: PERMANENT BASE

- FIRST AND SECOND MISSIONS (POSSIBLE FOUR LANDINGS)
 - GENERAL EXPLORATION AND RECONNAISSANCE
 - AUTOMATED ROVER AFTER CREW DEPARTURE
 - DEVELOPMENT OF CRITERIA FOR BASE SELECTION
 - POTENTIAL TO ACCELERATE DECISION ON BASE SITE SELECTION
 - CORRELATION OF ORBITAL RECONNAISSANCE WITH DATA FROM SURFACE

- THIRD AND FOURTH MISSIONS (POSSIBLE FOUR LANDINGS)
 - EXAMINATION OF CANDIDATE BASE SITES
 - AUTOMATED ROVER AFTER CREW DEPARTURE
 - USE FOURTH LANDING TO SET UP CONSUMABLES PLANT AT SELECTED BASE SITE
 - GENERAL EXPLORATION AND RECONNAISSANCE
CURRENT SCHEDULE FOR MARS - 1
(REVISED AND TO BE REVISED)

• APRIL 2001
 – MARS ODYSSEY ORBITER
 • MINERAL ANALYSIS / RADIATION

• MAY 2003
 – ROVERS
 • SURFACE GEOLOGY / WATER

• JUNE 2003
 – MARS EXPRESS ORBITER
 – BEAGLE 2 LANDER
 • ATMOSPHERE / SURFACE REMOTE SENSING
 • SURFACE SCIENCE / ASTROBIOLOGY

• DECEMBER 2003
 – ARRIVAL OF NOZOMI (ALREADY ON THE WAY)
 • UPPER ATMOSPHERE

• JULY 2005
 – RECONNAISSANCE ORBITER
 • IMAGING / MAPPING
CURRENT SCHEDULE FOR MARS - 2
(REVISED AND TO BE REVISED)

• LATE 2007
 – SMART LANDER/ROVER
 • SURFACE SCIENCE/SAMPLE RETURN TECHNOLOGY DEMO

• LATE 2007
 – ORBITER
 • REMOTE SENSING/NETLANDERS RELAY/ SAMPLE RETURN TECHNOLOGY DEMO

• LATE 2007
 – NETLANDERS
 • ATMOSPHERE/SEISMIC SOUNding

• LATE 2007
 – TELEMARS ORBITER
 • COMMUNICATIONS

• LATE 2009
 – ORBITER
 • POSSIBLE RADAR MAPPER

• 2011-2016
 – SAMPLE RETURN

NASA
CNES (FRANCE)
CNES (FRANCE)
ASI (ITALY)
NASA/ASI
ALL OF THE ABOVE
IF A LUNAR HELIUM-3 INITIATIVE BEGAN BY 2005 WITH ASSURED FUNDING, THE FIRST HUMAN MISSION TO MARS COULD BE LAUNCHED BY 2015, LARGELY USING TECHNOLOGY PAID FOR BY THE HELIUM-3 INITIATIVE.

HARRISON H. SCHMITT - 2001

(NOTWITHSTANDING DR. GRIFFIN’S COMMENT ABOUT “30 YEARS.”)
ENJOY THE VIEW WHEN YOU GET THERE!!!!!

“TRUE COLOR OF MARS”
PATHFINDER LANDER VIEW
NASA/JPL